|
Application Note 139

ﬂ= DALLAS Controlling a DS1803 Digital Potentiometer Using an
¥ SEMICONDUCTOR 8051 Microprocessor to Generate 2-Wire Signals

www.dalsemi.com

Introduction

Dallas Semiconductor’s DS1803 is ideal for systems that require the ability to change a biasing resistance,
current, or voltage, without the manual intervention required by a mechanical potentiometer. It can also
provide a dual Digital to Analog Converter (DAC) if the potentiometers are wired as voltage dividers.
Because the DS1803 requires only two 1/0 pins from a microprocessor to address up to 16 potentiometers, it
is perfect for applications with limited 1/O capacity and high performance requirements.

This application note presents a simple hardware and software solution for controlling the DS1803 using a
Dallas Semiconductor 8051-compatible microprocessor, the DS87C520. A basic schematic shows the
necessary connections between the microprocessor and the DS1803, and 8051 assembler code provides a
small application for controlling the chip’s two digital potentiometers using different write modes. After
each write cycle, the application reads back the information from the DS1803 and displays it on a PC via a
serial port to demonstrate a properly operational read function.

2-Wire Protocol Overview and Implementation on an 8051

The 2-wire serial protocol utilizes two signals to transmit information: Serial Data (SDA) and Serial Clock
(SCL). If both signals are high for the bus free time (1.3us, Fast Mode), then the bus is considered free and
any bus master may begin to transmit a signal to any slave on the bus. The transmit signal is initiated by a
start condition. A start condition (S) occurs when SDA is brought low while SCL remains high (see Figure
1). After the start condition is generated, the master sends an 8-bit message using SCL and SDA to the slave
it wishes to address. In the case of the DS1803, this 8-bit message is a control byte that includes the address
of the DS1803 and an indication of whether the master wishes to read from or write to the part. After the
slave receives the control byte, it acknowledges the master by pulling the SDA line low.

For a write command, the master transmits another command byte and waits to receive acknowledgment
from the slave. After the slave acknowledges the command byte, the master proceeds to transmit the data to
the slave in 8-bit blocks, with acknowledgment from the slave each time. After all the data has been
transmitted, the master generates a stop condition (labeled P, Figure 1) by setting SDA high when SCL is
already high.

Reading is accomplished by sending a different control byte. After the slave acknowledges the control byte,
the master continues to clock the SCL line and reads the information that the slave provides on the SDA line.
The master must acknowledge the slave after each byte is received, with the exception of the last byte read.
After the last byte is read, the master generates a stop condition without acknowledging the slave.

It should be noted that during data transmission, SDA can only be adjusted while SCL is low (otherwise an
inadvertent start or stop condition is generated). Further explanation of the 2-wire protocol can be found in

the DS1803 data sheet, which can be obtained from the following URL:
http://ww. dal seni . coni dat asheet s/ pdf i ndex. ht m

1 of 26 021401

AN139

It is relatively easy to write code to communicate with a DS1803 using an 8051 microcontroller -- especially
considering that changing a single 1/0 (such as SCL or SDA) pin requires only a single instruction on this
microprocessor. The 2-wire protocol is also nice because it has no specifications for minimum
communication rates. Thus, the signals cannot be placed on the bus too fast, but they can be very slow if the
processor is required for another more important task. Since each instruction on the 8051 takes a definite
number of clock cycles, it is easy to determine the length of time per instruction. This information can be
used to determine number of instructions that must be between the modification of either the SCL or SDA
pin. If additional delay is required, one or several nop instructions can be added to stall for the required
length of time.

S5 stopped VERTICAL
1 2 3 4
o L] L] o

o 2,00 W/Adiw-
~ position

- 5.50000 V-

dc ac
BW 1im LF rej

3.264000 ms 3.364000 ms 3.464000 ms G -0 o
20,0 usfdiv repetitive
current average std devw preset
frequency 23 173.739kH: 178 .313kH: 244,125 H: more probe

frequency € 32 73.0500kH: FO.O1127kH: 62,6914 He

Figure 1 — Start and Stop Conditions on a 2-Wire Bus

Hardware Setup

Because there are myriad 8051 hardware setups that could be used to talk to the DS1803, the diagram below
shows only the connections required to make the 8051 work with the DS1803 and the serial port. The serial
port is used to demonstrate that the 8051 reads the correct values from the DS1803.

The microcontroller is interfaced to the DS1803 using P1.0 as SCL and P1.1 as SDA. Notice that 4.7 kQ
pull-up resistors are used to pull both the SDA and SCL lines high when the bus is not being driven low by
either the 8051 or the DS1803. The DS1803 has been configured to provide two voltage outputs. This is
accomplished by attaching HX and LX to Vcc and Gnd, respectively. The address lines of the DS1803 are
grounded, so the chip is operating at address zero (0). If a different address is desired, the control bytes in
the software must be modified to allow communication to the device.

The third IC shown is the DS232A RS232 Transceiver. It is used to level-shift the 0-5VV CMOS signals to

and from +12V signals for RS232 transmission and reception. It uses its 5V Vcc to generate the £12V

supplies needed to perform with the capacitors shown (required for proper operation) on the diagram. The

DS232A is a convenient way to provide the hardware for RS232 communication, which allows verification
2 of 26

AN139
that the DS1803 design operates correctly. However, if the hardware for serial port 1 is not provided, the
code should still work to read and write the digital potentiometer if all of the calls to the DisplayPots routine
are eliminated.

Note: The code as written assumes that the microcontroller is operating on a 22.118 MHz clock.

The clock has to be close to that frequency for RS232 communication at 19200 baud. If the microprocessor
IS running at a different frequency, the serial port initialization routine may require modifications to the timer
1 auto-reload value, and a new baud rate that is compatible with the microprocessor’s clock rate may have to
be determined. The microcontroller user’s guide should provide some guidelines on serial port setup.

Vi
VCT D51803 DIP DS87C520
L 11 H1 Voo 16 g;_?k
— 2 HC NC 15
voy]2 LI HO 14 ggﬁ Pl 0
H o AZ wo 1211 — Fl1. 2
e a1 WC 11R TE1lpy 3
. 17 A0 SDA 10
Digital {8 Gnd 5SCL 9
Fot 10
li
- 0. 1uF
Yop
-5V 8051
111FH Compatible
DS2324 Micrao
1 Cl1+ Voo 16
L 1uF
1uF —2 T+ Gnd 15
L3 Zl- Tlo 14—4::‘?—
T-—5 C2- Rlo 12—
L—E- V- Tii 11—
1uF 7 Tz2ao T21i 10
:lT: — 2 RZ21i R2o 9
R‘ R332
Transmitter { %%i%%
HC 48 =T L Reciever
NC—g STHC W
HC a7 3
HC—6 ST *— B9 22.118 MHz
1=HC Connector

Figure 2 — Hardware Required for Proper Operation of DS1803 8051 Software
Note: All of the delays used for the 2-wire protocol have been generated using nop instructions.

Therefore, some of the communication code may need modification to increase or decrease the delays if a
different clock rate is desired or if a different 8051 microprocessor is used. The DS87C520 processes a nop
instruction in 4 clock cycles. Some 8051 microprocessors may require 12 clock cycles to perform a nop,
and hence less nops are required. It does not hurt to add extra nops into the code for additional delay if it is
believed that the code is not providing proper timing. As mentioned above, there are no limitations on how
slow the bus can operate in the 2-wire specification.

3 0of 26

AN139

If a 22.118 MHz clock is being used, the microcontroller may be connected to the serial port of a PC, and the
results of the program’s read attempts will be displayed on the PC terminal. The communications port on
the PC must be set up as 19200 baud, 1 stop bit, with no parity or flow control.

A boot strap loader system is shown in Appendix B as a practical hardware set-up for development purposes.
It is for reference only. It shows the connections to the DS1803 and the DS232A ICs, as well as connections
to a DS1075 oscillator to clock the 8051, and connections to a DS1245Y NV-SRAM for storage of both data
and code. Appendix B also contains a brief description of how the internal memory of the 8051 is
programmed to enable it to operate as a boot strap loader system.

Controlling the DS1803 Using Software Generated Commands on a 2-Wire Bus

This section briefly describes what each routine in the DS1803 software accomplishes. The code associated
with the descriptions is in Appendix A.

There are four groups of code: initialization routines, command routines, bit driver routines, and
miscellaneous routines. All DS1803 communication occurs in the bit driver routines. These are the
functions that actually place data or receive the data on SDA and send the clock signals to the DS1803. The
command routines allow transmission of the control and command bytes without the need to type out the
same sequences each time in main section of the program.

Initialization Routines

There are three initialization routines in the software that prepare the 8051 to communicate with both the
DS1803 and the PC attached to serial port 1. These routines initialize serial port 1, write a welcome message
to the PC, and initialize the SDA and SCL lines.

Icall initSP1

Initializes serial port 1 by accomplishing the following: the baud rate doubler is enabled; serial port 1 is
placed in asynchronous 10 bit mode; timer 1 is enabled and placed in 8-bit auto reload mode; and timer 0 is
on and in 16-bit count mode. The timer 1 auto reload value is also set, and that determines the baud rate will
be 19200 baud with the current 22.22 MHz clock.

Icall intro
Displays welcome message by pointing the data pointer DTPR to the beginning of the message and calling
the outstr routine.

Icall init2wire
Initializes SDA and SCL by setting both at the start of the program.

Command Routines

These routines transmit the control and command bytes required for operation of the DS1803. All of the
command routines that proceed writes to the DS1803 require more information (data) to be sent with
subsequent commands as described below. The commands for reading and displaying the values
controlling each potentiometer can handle all of the data without need for further processing.

Icall CMDReadPots

Reads the value at which both potentiometers are currently set. Sends a start condition with start2wire, and
then writes the control byte to read the potentiometers with writebits and AckSlaveWrite. Next, the readbits
and the AckSlaveRead routines are used to place the 8-bits of data from the slave into byte form in the

4 of 26

AN139

accumulator. Once received, each byte is placed in the 8051’s RAM. Finally, the command is terminated
with a stop condition via the stop2wire command.

Note: The last byte during a read is not acknowledged, as specified in the DS1803 2-wire instructions.

Icall DisplayPots

Displays the values read by CMDReadPots on a PC via serial port 1. This is accomplished by using the
binasc routine to convert the 8-bit number retrieved from the potentiometer to two ASCII bytes in
hexadecimal format. The outchar routine then transmits the two ASCII bytes to the PC using serial port 1.

Icall CMDWritePot0

Sends a start condition and then writes both the control and command bytes required to set the value of
potentiometer 0. After the control and command bytes are written, either 1 or 2 bytes must be written to the
part using the WriteByte routine. Following the data, a stop condition must be generated. The first byte
written out following this command sets the value of potentiometer 0, and the second byte (optional) sets the
value of potentiometer 1.

Icall CMDWritePotl

Sends a start condition and then writes both the control and command bytes required to change the value of
potentiometer 1. One byte of data will always be sent to the potentiometer after this command, and a stop
condition will always follow the data byte. This command will write the value of the data byte to
potentiometer 1.

Icall CMDWritePot01

Sends a start condition and then writes both the control and command bytes required to set both
potentiometers to the same value. One data byte will always be sent to the potentiometer after this
command, and a stop condition will always follow the data byte. This command will write the value of the
data byte to both potentiometers.

Icall WriteByte
The routine calls the writebits and the AckSlaveWrite routines to write the data byte in the accumulator at
the time that WriteByte is called.

Bit-Level Driver Routines
These routines are used to drive the SCL and SDA lines with the proper timing to communicate with the
DS1803. The timing is generated using nops and calls to the wait2us routine.

Icall writebits

Performs the functions necessary to write a byte, 1 bit at a time over the 2-wire bus. The MSB of the byte in
the accumulator is rotated into the carry bit, the carry bit is transferred to SDA, and the bus is clocked. All
timing for this routine is done by nops, and it always writes an entire byte.

Icall readbits

Performs the functions necessary to read a byte one bit at a time from the 2-wire bus. Each time through the
loop, the clock (SCL) is set and the current bit is read from the SDA line into the carry bit. The carry bit is
then rotated into the accumulator (MSB first). After each bit is read, SCL is cleared, completing 1 clock
cycle. All timing for this routine is done by nops, and it always reads an entire byte.

5 of 26

AN139

Icall AckSlaveWrite

Checks for an acknowledgment from the slave (pull SDA low) after the writebits routine is called. If the
slave fails to acknowledge the data transfer, then the microprocessor sends a message over the serial port to
the PC that says “Ack Fail.” If the slave does acknowledge the data transfer, then the routine simply returns
to the calling function. All timing for this routine is also done with nops.

Icall AckSlaveRead
Pulls SDA low and sends a clock pulse to the slave to acknowledge the data was received during a read
operation. All timing is generated in this routine using nops.

Icall start2wire
Waits until the bus is not busy (SDA and SCL both high), and then pulls SDA low to create a start condition.
It uses the wait2us function to generate timing.

Icall stop2wire
Sets SDA high while SCL is already high to create a stop condition. Timing is generated by a combination
of nops and wait2us calls.

Icall wait2us
Creates a 1.6us delay by using a Icall, single nop, and a ret instuction.

Miscellaneous Routines

There are three routines used for communicating over the serial port. These routines convert a byte number
to two ASCII characters, write a single character to the PC via serial port 1, and write a null terminated
string to the PC using serial port 1.

Icall binasc
Converts a byte number to two ASCII characters in a hexadecimal format.

Icall outchar
Moves a single byte into the serial port 1 buffer and waits for the microprocessor serial transmission
complete flag to be set before returning to the calling function.

Icall outstr

Sends a null terminated string to the PC via serial port 1. This is accomplished by sending consecutive bytes
starting at the location pointed to by the DTPR register at the time outstr is called. When DTPR points to
the character zero (null character), control is returned to the calling function.

The Main Program

The main program starts at the start label. It first initializes the program, and then performs the
CMDReadPots (see Figure 3) and DisplayPots commands. If the part was powered down before these
commands, both pots should contain zero as their current value. If the parts have been written to since the
last power down, the potentiometers will contain their last values before the read function. Next, 01h is
written to potentiometer 0, and the program reads and displays the value of both potentiometers. The values
read now should be 01h for potentiometer 0 and 00h (if the part was powered down, see Figures 4 and 5) for
potentiometer 1. Next, 02h is written to potentiometer 1, and the value of both potentiometers is again read
and displayed. The potentiometer’s values should now be 01h and 02h for potentiometers 0 and 1
respectively. The next command demonstrated is CMDWritePot01. The program writes 13h to both pots,
and then reads and displays the status of the potentiometers. Finally, it uses the CMDWritePot0 command
to write 24h and 25h to potentiometer O and 1 respectively. The results are again verified. After the

6 of 26

program is finished, it enters an infinite loop to end execution. The PC output of the program can be seen in

Appendix C.

A5 stopped

VERTICAL

SCL

SDA

1234
(

p—

- 2,00 Widiv~
~ position

i

5.50000 N

dc ac
BW Tim LF rej

g4.,000 us

=16.000 us
20,0 ussdiv
current average std dew
frequency 27 157.101kH: 156 .587kH: 514,141 He
frequency (30 73, 4925kH: 74.4549kH: 962 .415 He

Figure 3 — The First Read Cycle As Seen On An Oscilloscope.

A5 stopped

184,000 us
repetitive

SCL

FRETRVU R BB s b Beat WA

SDA

2.264000 ms 2.364000 ms

20,0 ussdiv
current average std dew
frequency 27 1758.759kH: 178 .515kH: 244,125 He
frequency ¢ 37 73, 0500kH: FELO1127kH: 62.6914 He

Figure 4 — A Write / Read Cycle As Seen On An Oscilloscope

7 of 26

2.464000 ms

repetitive

50 DC

preset

more
probe

VERTICAL
1234
(

p—

Widiw
- 2,00 Vidiw-

~ position

- 5.50000 N

EEEE
BW Tim LF rej

50 DC

preset

more
probe

AN139

S5 gtopped VERTICAL
1 2 3 4
o - - =]
of t (I
SCL
2000 Nidiw
- 2,00 Widiv-~
~ position
SDA - 5.50000 Y-
ac
EW 1im LF rej
5.368000 ms 5. 468000 ms 5.568000 ms SN S0 o
20,0 us/div repetitive
Current gverage std devw preset
fregquency ¢ 21 209, 254kH: 203.076kH: 5.04161kH: more probe
freguency ¢ 30 140.957kH: 140,317 kH: 1.50451kH:

Figure 5 — Continuation of Figure 4, the time in milliseconds can be used to follow the screen shot

Dallas Semiconductor Contact Information

Address World Wide Web Site:

4401 S. Beltwood Parkway www. dal sem . com

Dallas, TX 75244

Tel: 972-371-4448 Ordering Information:

Fax: 972-371-4799 www. dal sem . com product s/ orderi ng. pdf
Product Literature: FTP Site:

(972) 371-4448 ftp://ftp.dal sem .com

Sales and Customer Service: Datasheets:

(972) 371-4969 www. dal sem . com dat asheet s/ pdf i ndex. ht mi

Package/Mechanical Drawings:
www. dal sem . conml dat asheet s/ mechdwg. ht ni

8 of 26

App Note 139

Appendix A - Code Used to Generate 2-Wire For The DS1803 Using A
DS87C520 Microprocessor

CHE S R b I b Sk b b b I b S I R b bk I b b S S kb Sk b b I b S b e b b i bk b b I b S R bk S b S I b
1

; DS87C520 APPS DEVELOMVENT SYSTEM
; Appl i cation: Conmunication with DS1803
, R I S I I S S S S S S S I I S S S S S S S S S S S I i S b S S S S S S S S S S i S S S I i i I S S S S S S S S S S S S S S
This programwas created to denonstrate using a 2-wire interface
to talk to a DS1803 Digital Potentioneter. The programtalks to
a PC using RS232 over Serial Port 1 (19200 Baud). The micro is
operated usi ng DS1075 GOscillator operating at 22.2MHAz. Seria
Port O and nost of the resources on the mcrocontroller are not

bei ng used at this tine.

; Sof tware Revi sion Hi story
; 1.0 01/09/01 - First try at operating the DS1803 using
the application's engineering generic 8051

boar d.

Har dwar e Descri ption

; P1.0 - SCL P3.0 - RXDO - Not used
; P1.1 - SDA P3.1 - TXDO - Not used
; P1.2 - RXD1l - PC P3.2 -
; P1.3 - TXD1 - PC P3.3 -
; P1.4 - P3. 4 -
; P1.5 - P3.2 -
; P1.6 - P3.6 - WR
; P1.7 - P3.7 - RD
; P2.0 - PO. 0 - SN74F373N
; P2.1 - PO. 1 - !
; P2.2 - PO. 2 -
; P2.3 - PO. 3 - !
; P2.4 - PO. 4 -
; P2.5 - PO.5 -
; P2.6 - PO. 6 - !
P2.7 - PO. 7 -

Wndow O RO - Used for 2-wire read and wite, Do not destroy!
Wndow O R3 - Used for binasc routine, Do not destroy!

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

- %

1
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

- %

)

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

kkhkkkhkhkkhkkhkhkkhhkhkkhhkkhhkhkkhhkhhkhkhhkhhhkhhkhkhhkhhkhkhhkhhhkhhkhdhhkhhkhkkhhkhhkhkkhhkhkhkhkihkhkkhhkihkkkx
’

9 of 26

App Note 139

$include (c:\firmvare\reg520.inc) ;

ckkkkkhkhkkhkkhkkkhkkh*k
’

st ack equ
Pot O equ
Pot 1 equ

s kkkkkhkhkkhkkhkkkhkkh*k
’

snod_1 equ
SCL equ
SDA equ

s kkkkkhkhkkhkkhkkkhkkk*k
’

cndWiteO equ
cnmdWitel equ

cnmdWtO0l equ
cnt Read equ
cntWite equ

SFR regi ster defs for conpiler

Vari abl e Declaratlons KKK KK KKK KKk K

02Fh ; bottom of stack

; stack starts at 30h
040h : Value Read from DS1803 for PotO
041h : Val ue Read form DS1803 for Pot1l

IR R I b S b I b

SFR Decl ar ati ons

ODFh : baud rate doubler bit declared
90h : P1.0 is SCL
91h . P1.1 is SDA

Const ant Declaratlons FhRI KA * Kk h ok k Kk k

0A9h ; command for witing potO

0AAh ; command for witing potl

OAFh ; conmmand to wite 0&1 to same thing

51h ; control byte, read pot 0 OR0 & 1
; at addr=0

50h ; control byte, wite pots at addr=0

10 of 26

App Note 139

ckkkhkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkh ki hkhkhkhkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkhkhkhkkhkhkkhkhkhkkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkkkhkkk

;* Hardware Interrupt Vectors (Table on page 95 of DS dat abook) *

L S R O S S R Rk R R I R R S A b S R I R S S R S I b S b S R R S R S

;* No Interrupts are enabled in this code. |If interrupts are to be *
;¥ enabl ed they need to have the label initialized here. *

ckkkhkkkhkhkkhkhkhkkhkkhhkhkhkhkhkhkhkhkhkkhkhkhkkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkkhkhkhkkhkhkkhkhkkk

org 0000h ; Power up and Reset

[jmp start

org 0003h ; External Interrupt O

[jmp start

org 000Bh ; Timer O Interrupt

[jmp start

org 0013h ; External Interrupt 1

[jmp start

org 001Bh ; Timer 1 Interrupt

[jmp start

org 0023h ; Serial Port O Interrupt

[jmp start

org 002Bh ; Timer 2 Interrupt

[jmp start

org 0033h ; PowerFail Interrupt (DS Priority 1)
[jmp start

org 003Bh ; Serial Port 1 Interrupt (DALLAS)
[jmp start

org 0043h ; External Interrupt 2 (DALLAS)
[jmp start

org 004Bh ; External Interrupt 3 (DALLAS)
[jmp start

org 0053h ; External Interrupt 4 (DALLAS)
[jmp start

org 005Bh ; External Interrupt 5 (DALLAS)
[jmp start

org 0063h ; Wat chdog I nterrupt (DALLAS)
[jmp start

org 006Bh ; Real -Time O ock (DALLAS)

[jmp start

chkkhkkkhkhkkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkh ki hkkhkhkhkkhkhkhkhkhkkhkhkhkhhkkhkhkhkhkhkkhkhk ki khkhkhkkhkhkhkhkhkkhkhkhkkhkhkkhkhkhkkhkhkkkhkkk

;**** Main Program * ok
pREEK This programtal ks to a DS1803 using 2-wire, FastMode. |t ****
pREKER wites to the part using all of the wite nodes, and it * kK ok
pREEK reads the information in the part back each tine. *HREK

CE S R 2k I b Sk b S b R I b b b I b S b I R R b I b i b b I b i b b b b S b R I Rk b b I b S b b i b b I b i b S

Mai n Pr ogram starts next page

11 of 26

App Note 139

start:

endmai n:

sj np

0080h;

EA

i nitSP1
intro
init2w re

CVDReadPot s
Di spl ayPot s

CVMDW i t ePot O
A, #01h
WiteByte
stop2wire

CVDReadPot s
Di spl ayPot s

CVMDW i t ePot 1
A, #02h
WiteByte
stop2wire

CVDReadPot s
Di spl ayPot s

CVMDW i t ePot 01

A, #13h
WiteByte
stop2wire

CVDReadPot s
Di spl ayPot s

CVDW i tePot O
A, #24h
WiteByte

A, #25h
WiteByte
stop2wire

CVDReadPot s
Di spl ayPot s

endnmai n

Di sable Interrupts

Initialize Ser
Wl cone Message,

Port 1 & Tiner

Seri al

1/0
Port 1

Initialize 2-wire Vari abl es

Read Data from both pots
Di spl ay data read over Ser.

Port 1

Send Conmmand for Wite Pot O
Load Data to send to Pot O

Wite Data in Ato Pot O

Send Stop Condition

Read Data from both pots
D splay data read over Ser.

Port 1

Send Command for Wite Pot 1
Load Data into Ato wite to Pot1l

Wite Data

Send Stop Condition

Read Data From Both Pots
D spl ay Data Read over Ser.

Port 1

Send Command for Wite Pot 0 and 1
Load data into A

Wite data to both pots

Send Stop Condition

Read Data from both pots
D splay data read over Ser.

Port 1

Send conmand to wite potO
Load data into A
Wite Data to PotO
Load Data into A
Wite Data to Potl
Send Stop Condition

Read Data from both pots
Di spl ay data read over Ser.

Waits forever

12 of 26

Port 1

App Note 139

ckkkhkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkh ki hkhkhkhkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkhkhkhkkhkhkkhkhkhkkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkkkhkkk

pREEK 2-Wre WiteByte Routine *REK
pREKEX Wites Data out to the part and reads the acknow edge ****
pREHEX fromthe slave * xRk
;***
;* requires witebits and AckSl aveWite routines *
;* transmts data in ACC at tine called *

CIE S Rk I b Sk b b e bk I b S S b bk I b b S S kb Sk S S I b S b i bk S bk b b S Sk I bk I b b b S

WiteByte:
lcall witebits ; Wites Data in A to DS1803
| call AckSlaveWite ; Checks for slave acknow edgnent
ret

ckkkhkkkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhk ki hkhkhkhkkhkhkhkhkhkkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkkhkhkhkkhkhkkkhkkk

;*¥*%% 2 \Wre WitePot0 Conmand Routine e
jREEE Sends a start condition and wites the control and R
[RE xR command bytes out to the pot to wite to potO e
CHE S R Sk I b Sk b b e b b I b S S Rk b bk I b b S S Rk I b Sk A I b S b e bk S bk b S I R b b S bk S S I b
;* requires start2wire, witebits and AckSl aveWite routines *

CHE S Rk I b Sk b b bk I b S b I R Ik S bk I b bk S S kb Sk b b I b S b e bk S bk b S I R b Sk S bk S S I b

CVDW i t ePot O:

lcall start2wire ; send start condition

nov a, #cntWite ; load control byte into A
lcall witebits ; write control byte

| call AckSl aveWite ; check for slave acknow edge
nov a, #cnmdWiteO ; load command byte into A
lcall witebits ; Wwite command byte

I call AckSl aveWite ; check for slave acknow edge
ret

CE S R 2k I b Sk b b b I b b b I b R bk I b i b bk I b S S S S S b b e b b i b b b I b S R bk b b i b

;**%% 2 \Wre WitePot1l Conmand Routine e
PRk x Sends a start condition and wites the control and FA A
[RHRAE command bytes out to the pot to wite to potO wrww
ckhkkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkhkkhkkhkkhkkhkkhkkhkhk*k
;¥ requires start2wire, witebits and AckSl aveWite routines *

ckkkhkkkhkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkkhkhkhkkhhkhkhkhkkhkhkhkkhkhkkhkhkhkkhkhkkhkkhkk

CVMDW i t ePot 1:
lcall start2wire ; send start condition
nov a, #cntWite ; load control byte into A
lcall witebits ; Wwite command byte
| call AckSlaveWite ; check for slave acknow edge
nov a, #cmiWitel ; load command byte into A
lcall witebits ; Wwite command byte
| call AckSlaveWite ; check for slave acknow edge
ret

chkkhkkkhkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhk ki hkhkhkhkkhkhkhkhkhkkhkhkhkhhkkhkhkhkkhkhkkhkhkhkkhkhkkhkhkhkkhhkhkkhkhkkhkhkhkkhkhkkhkhkhkkhkhkkhkhkk

13 of 26

App Note 139

PR KKK byte to both potO and potl

pREKER 2-Wre WitePot 01l Command Routi ne * kK ok
pREHEX Sends a start condition and wites the control and *x KK
pREKEX command bytes out to the pot required to wite the same ****

* k k%

CE S Rk I b Sk b b i b b I b S S I Rk b S bk b b I b S kb S S S S S b i b S S kb b Sk I b b b I b

;* requires start2wire, witebits and AckSl aveWite routines

*

CHE S Rk I b Sk b b b b I b S S R b bk b b I b S Sk I b S b b I b S b e b b i bk b b I b S Sk bk i b b S

CVDW i t ePot 01;

[call start2wire ;
nov a, #cntWite X
lcall witebits

| call AckSlaveWite X
nov a, #cmdWtol X
lcall witebits

I call AckSlaveWite X
ret

send start condition

| oad control byte into A
wite control byte

check for slave acknow edge
| oad conmand byte into A
wite conmand byte

check for slave acknow edge

CHE S R Sk I b Sk b b e b b I b S S Rk b bk I b b S S Rk I b Sk A I b S b e bk S bk b S I R b b S bk S S I b

PREEK 2-Wre ReadPots Routine
PREEK Reads the Val ue of Pot0O and Potl and noves the data into ****
pREEK vari ables called Pot0O (40h) and Potl (41h)

* k%%

* k k%

chkkhkkkhkhkkhkhkhkkhkhkhkhkhkhkhkhkhhkhkhk ki hkhkhkhkkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkkhkhkhkkhkhkkhkhkhkkhhkhkhkhkkhkhkhkkhkhkkhkhkhkkhkhkkhkhkkk

¥ requires start2wire, witebits, readbits, AckSlaveWite,
;* AckSl aveRead,

and stop2wire routines

*

*

chkkkhkkkhkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhk ik hkhkhkkhkhkhkhkhkkhkhkhkhhkkhkhkhkkhkhkkhkhkhkkhkhkkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkkhkhkhkkhkhkkhkkhkkk

CVDReadPot s:

[call start2wire ;
nov A, #cntread X
lcall witebits

I call AckSlaveWite X
lcall readbits ;
| call AckSl aveRead X
nov Pot 0, A ;
lcall readbits X

nov Potl, A ;
[call stop2wire ;
ret

send start condition

| oad control byte

wite conmand byte

check for slave acknow edge
read data byte from sl ave

send sl ave acknow edge

copy data read to RAM var PotO
read data byte from sl ave

do not acknow edge sl ave when you
read the | ast byte of data during
a read sequence

copy data read to RAM var Pot 1l
send stop condition

14 of 26

App Note 139

ckkkhkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkh ki hkhkhkhkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkhkhkhkkhkhkkhkhkhkkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkkkhkkk

pREER Di spl ay Pots Routine * ok x
pREKEX Di spl ays the value of Pot0O and Potl stored in the * kK ok
pREEK vari abl es of the same nane using serial port 1 xRk
EE I i I I I I I I I I I I i S I S I
;* requires binasc and outchar routines *

CHE S Rk I b Sk b b b b I b S S R b bk b b I b S Sk I b S b b I b S b e b b i bk b b I b S Sk bk i b b S

Di spl ayPot s:

nov
| call
| call
nov

| call
nov
| call
nov
| cal |
nov
| cal |

| cal l
nov
| cal l
nov
| cal |
nov
| cal |
nov
| call
nov
| cal |
ret

A, PotO
bi nasc
out char
A R3

out char
A, #0Dh
out char
A, #O0Ah
out char
A, Potl
bi nasc

out char
A R3

out char
A, #0Dh
out char
A, #0Ah
out char
A, #0Dh
out char
A, #O0Ah
out char

nove data read from RAM @ot0 to A
convert data frombin to asci

send first byte via Ser. Portl

nove the second byte from conversion
fromR3 to A

send second byte via Ser. Portl

send Return via Ser. Portl

send Line Feed via Ser. Portl

Move data read from RAM @0t0 to A
convert data frombin to asci

wite first and second bytes
and 2-CRs, 2-LFs out via Ser. Portl

15 of 26

App Note 139

ckkkhkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkh ki hkhkhkhkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkhkhkhkkhkhkkhkhkhkkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkkkhkkk

[REER Wite Bits Routine *ok ko
pRF KX Serializes and Transmits the data in the Accunul ator at ****
pREEX the tinme the routine is called * kK x
;***
;* requires no other routines *
;¥ Destroys Wndow O RO regi ster and ACC *

CIE S Rk I b Sk b b e bk I b S S b bk I b b S S kb Sk S S I b S b i bk S bk b b S Sk I bk I b b b S

witebits:
nov RO, #8 ; sets up for transfer of 8 bits
nextwitebit:
ric A ; nove the MSB of the ACCinto C
nov SDA, C ; wite Conto SDA |ine
setb SCL ; set SCL
nop
nop ; clock high tine, 180ns/nop
nop
nop
clr SCL ; clear SCL
nop
nop ; clock lowtinme, 180ns/nop + other
nop ; instructions between |ast nop and
nop ; next setb SCL
dinz RO, nextwitebit ; if the 8th data bit not sent yet
; then keep sendi ng data
ret

16 of 26

App Note 139

ckkkhkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkh ki hkhkhkhkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkhkhkhkkhkhkkhkhkhkkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkkkhkkk

pREEX 2-Wre Readbits Routine * kK x
pRF KX Reads 8-bits of data fromthe slave device, and stores ****
pREEX the received data in the Accunul at or * kK x
;***
;* requires no other routines *
;¥ Destroys Wndow0 RO register and ACC *

CIE S Rk I b Sk b b e bk I b S S b bk I b b S S kb Sk S S I b S b i bk S bk b b S Sk I bk I b b b S

readbi ts:

setb SDA

nmov

RO, #8

next readbi t:
setb SCL

nop
nop
nov
ric
clr
nop
nop
nop
nop
nop

dj nz

ret

C, SDA
A
SCL

RO, nextreadbit

SDA nmust be set for an open
col | ector read

sets up for transfer of 8 bits

set SCL

cl ock high time, 180ns/nop + other
instructions before clr SCL

Pl ace Data on SDA into C

nove the Cinto LSB of A

clear SCL

clock low tine, 180ns/nop + other
i nstructions before next setb SCL

; If the 8th data bit not sent yet
; keep sendi ng data

17 of 26

App Note 139

ckkkhkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkh ki hkhkhkhkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkhkhkhkkhkhkkhkhkhkkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkkkhkkk

PR KKK 2-Wre Acknow edge Sl ave Routine for WRI TES
PR KK Used to acknow edge sl ave devi ces DURI NG WRI TES

CE S Rk I b Sk b b b b I b S S S b bk b b S S Rk I b b b I S b i bk i bk b R I Sk S bk b b b R

;¥ requires outstr
;* uses DPTR register

routi nes

* k k%

* k%%

*

*

CHE S Rk I b Sk b b b b I b S S R b bk b b I b S Sk I b S b b I b S b e b b i bk b b I b S Sk bk i b b S

AckSl aveW it e:

setb
nop
nop
setb
nop
nop
nop
jb

clr
nop
nop
ret
Ack fail:
nov
| cal l
clr
clr
nop
nop
nop
nop
nop
nop
setb
nop
nop
nop
nop
nop
nop
nop
setb
ret

SDA

SCL

SDA, Ack fai

SCL

DPTR, #ness4
outstr

SCL

SDA

SCL

SDA

set SDA
wai t 180ns/ nop

set SCL

wait 180ns/nop + other instructions
wi th clock high

i f SDA high (acknow edge fails),
then junp to error routine
el se ack passes, set SCL and

wait 180ns/nop + other instructions

for clock to go high

point to ack fail serial nessage
send nmessage out

clr SCL

clr SDA

clock tinme Iow, 180ns/nop + clr
SDA instruction

set SCL

clock tinme high, 180ns/nop

create stop condition
return to calling procedure

18 of 26

App Note 139

ckkkhkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkh ki hkhkhkhkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkhkhkhkkhkhkkhkhkhkkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkkkhkkk

pREEK 2-Wre Acknow edge Sl ave Routine for READS *HEK
pREKEX Used to acknow edge sl ave devi ces DURI NG READS * kKK
EE I i I I I I I I I I I I I I i I I S I S I b I
;¥ requi res no other routines *
;¥ uses no registers *

CHE S Rk I b Sk b b b b I b S S R b bk b b I b S Sk I b S b b I b S b e b b i bk b b I b S Sk bk i b b S

Ack Sl aveRead:

clr
nop
nop

SDA

setb SCL

nop
nop
nop
nop
clr
ret

SCL

cl ear SDA
wai t 180ns/ nop

set SCL

wai t 180ns/ nop

cl ear SCL
return

CHE S Rk I b Sk b b bk I b S b I R Ik S bk I b bk S S kb Sk b b I b S b e bk S bk b S I R b Sk S bk S S I b

pREEN Wait 2us Function *HEK
pREKER Wastes 1.6us of processor tine with call, nop and return ****
EE I I I I I I I I I I I I I I I A I I I I I I I I I I I I I B I I I I I I I I I i I I I I I I I I I I I I I I b I S I b
;* Requires no other routines or registers *

chkkkhkkkhkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhk ik hkhkhkkhkhkhkhkhkkhkhkhkhhkkhkhkhkkhkhkkhkhkhkkhkhkkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkkhkhkhkkhkhkkhkkhkkk

wai t 2us:
nop

ret

1 nops @cc each + lcall @6cc + ret @é6c¢c
produces approximtely 1.6us of delay with a
22.22NHz cl ock

19 of 26

App Note 139

ckkkhkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkh ki hkhkhkhkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkhkhkhkkhkhkkhkhkhkkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkkkhkkk

;**x% 2.Wre Start Condition Generator Routine e
jXEEE Vaits until the 2-Wre bus is not busy, the generates a ****
jREHE a start condition. Does not wait for the 2-Wre bus o
 XEEK free tinme, because this code is not intended to be used ****
pREAK ina 2-wire multimaster system e
;***
;* requires wait2us routine *
;¥ uses no registers *

CE S Rk I b S b b I b S R b bk I b b I bk kI Rk b b I b S b bk i bk b b I b S Rk I bk b e b i b

start2wi re:
j nb SCL, start2wire ; if SCL | ow, bus busy, wait
j nb SDA, start2wire ; if SDA | ow, bus busy, wait

clr SDA ; start condition

[call wait2us ;o wait 2us

clr SCL ;. clear SDL

[call wait2us ;o wait 2us

ret ; return to calling function

CHE S Rk I b Sk b b bk I b S b I R Ik S bk I b bk S S kb Sk b b I b S b e bk S bk b S I R b Sk S bk S S I b

pREEN 2-Wre Stop Condition *HEK
pREKER Used to send a stop condition * kK ok
EE I I I I I I I I I I I I I I I A I I I I I I I I I I I I I B I I I I I I I I I i I I I I I I I I I I I I I I b I S I b
;* requires wait2us routine *
;¥ uses no registers *

CE S R I b Sk b b b I b S S I bk I bk I b b S S kb Sk b b I S b i b b i bk b S I b S Sk i bk b i b i b

stop2wi r e:
clr SDA ; SDA nmust be low so it can go high while

; the clock is high to generate the
; stop condition

nop ; kill 180ns/nop, stop setup tine

nop

nop

nop

setb SCL ; set clock

nop

nop

nop

nop

setb SDA ; set SDA generating stop condition

l call wait2us

ret

20 of 26

App Note 139

ckkkhkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkh ki hkhkhkhkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkhkhkhkkhkhkkhkhkhkkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkkkhkkk

pREEK 2-Wre Initialization Routine *A ok x
pREEK Inits SCL and SDA to Set Condition * ok
EE I i I I I I I I I I I I I I i I I S I S I b I
;¥ requi res no routines *
;* Uses no Registers *

CHE S Rk I b Sk b b b b I b S S R b bk b b I b S Sk I b S b b I b S b e b b i bk b b I b S Sk bk i b b S

init2w re:
setb SCL ; start programw th SCL set
setb SDA ; start programw th SDA set
ret

chkkhkhkkhkhkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhk ki hkhkkhkhkkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkkhkhkhkkhkhkkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkkhkhkhkkhkhkkkhkkk

;**** Initialize Serial Port 1 for PCinterface e
[RA KK Set up serial port 1 for use with a 22.1 MHz crystal e
C Kk Kk Uses timer 1 for 19200 baud, Mde 1 e
EE I i I I I I I I I I I I I S I I
;* Uses no other routines or registers *

ckkkhkkkhkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkkhkhkhkhkhkkhkhkhkhhkkhkhkhkhkhkkhkhkhkkhkhkkhkhkhkkhhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkkhkkhkkk

i ni t SP1:
seth snod_1 ; enabl e baud rate doubl er
nov SCON1, #50h ;Serial Port O asynch, 10 bits
nov TMOD, #21H ; MBB-T1 on and in 8bit autol oadnode

; LSB-TO on and in 16-bit count node
; TO is free running 2*16c¢cc
; overflow rate (35.59ns)

nov TCON, #50H ;11/0 enabl ed, not using ext int

; edge/ | evel select and detect

; flag/reg
nov TH1, #OFAH ;set tl1 reset val / baud rate=19200
ret

21 of 26

App Note 139

ckkkhkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkh ki hkhkhkhkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkhkhkhkkhkhkkhkhkhkkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkkkhkkk

pREHEX Intro D splay Message Routi ne FHRFIH
pREKEX Sends out a greeting nessage * kK ok
EE I i I I I I I I I I I I I I i I I S I S I b I
;¥ Uses outstr function *
* Destroys DPTR *

CHE S Rk I b Sk b b b b I b S S R b bk b b I b S Sk I b S b b I b S b e b b i bk b b I b S Sk bk i b b S

ntro: nov
| cal |
nov
| call
nov
| call
nov
| cal |
ret

DPTR, #nmessl
outstr
DPTR, #nmess?2
out str
dptr, #ness3
out str
DPTR, #nmess?2
outstr

CE S Rk I b Sk b b b b I b S S Rk I S bk I b b S kb Sk b b S S b S S kb S b S b Sk S bk b b I b

pREKEX Qutstring Routine * kK ok
pREEN wites a null termnated string to PCvia Ser. Port 1 *HEK
EE I I I I I I I I I I I I I I I A I S I I S I b
;* Uses outchar routine *
;x Destroys dptr and A *

chkkhkkkhkhkkhkhkhkkhkhkkhkkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkkhkhkhkkhhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkkkhkkk

outstr: clr

novc
jz

| cal |
i nc
sj np

exitstr:

ret

A

A, @G\+DPTR
exitstr
out char
dptr
outstr

chkkkhkkkhkhkkhkhkhkkhkhkhkhhkkhkhhkkhkhkkhkhkhkkhkhk ki hkkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkkhkhkhkkhkhkkhhkhkhk

jREEH Qut char
pREEK wites character in Acc to the PC via serial port 1 *HEK

routine * ok kx

chkkkhkkkhkhkkhkkhkhkkhkhkhkhkhkkhkhkhkkhkhkhkhkhkkhkhkhkhhkkhkhhk ik hkhkhkkhkhkhkhkhkkhkhkhkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkkhkhkhkkhkhkkhhkhkkhk

* Uses no routines or registers *

CRE S S b O b I Sk I b S b I b I b b b I b S S I R i b e b b I b S b b S b R bk I b S b b e b S i b e b I b S

out char:
nov
wai t char:jnb
clr
ret

SBUF1, A
SCON1. 1, wai tchar
SCONL. 1

22 of 26

App Note 139

chkkkhkkkhkhkkhkkhkhkkhkhkhkhkhkkhkhkhkkhkhkhkhkhkkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkkhkhkkhkhkhkkhkhkkhkhhkkhkhk ki hkkhkhkhkkhkhkkhkhkhkkhkhkkhhkhk Kk

;**** Binary to Ascii conversion routine e
kKK Converts a binary nunber in Acc to 2 ascii digits i
sk k%

;¥ Destroys A and R3

Leaves results in A (upper digit) and R3 (lower digit) *x KK

CRE S S b b S S bk I b Sk b I Sk I b b b S S I b b i b b R S b b b b I b S b b e b b i b e b I b S

D x Uses no routines

*

*

CRE S S b b S S S Sk I b b b I S b bk I b S S S I R b e b b I b S b b S b R Ik I b S b b S b b i b e b I b

bi nasc:
nov
anl
add
j nc
add

noadj 1:

xch

ad

swap

anl
add
j nc
add
noadj 2:
add
ret

R3, A ;
A, #OFh ;
A, #O0F6h ;
noadj 1 ;
A, #07h

d A #3Ah ;
A R3 ;
A

A, #OFh ;
A, #0F6h ;
noadj 2 ;
A, #07h

A, #3ah ;

save nunber in R3

convert least significant digit
adjust it

if a-f readjust

make asci
put result in reg2

convert least significant digit
adjust it
if a-f readjust

make asci

CRE S S b I b S i b b I b S S I Sk I b b I b S S b e b I b S S b b b b I b S I I b Sk i b e b I b S S

MESSAGES

LIRS R b b S S S R R I S S Sk R S S S S S R R S R S S S R kS R S

s kk k%
1

org 8000
messi:

mess2:

nmess3:

nmess4:

h

db
db
db

db
db
db
db

db

Jason''s
Now uses

* k k%

Pr ot o- board, Rev. 0.1', 0Dh, OAh
DS1075 for a cl ock, DS1803', ODh, OAh

' added for 2-Wre Conmmuni cation Denp.',0

ODh, OAh, ODH, OAH, O

This programtalks via a 2-wire interface', ODh, OAh

to a DS1803, and uses serial port 1 to',ODh, OAh

conmmuni cate with the user', ODh, OAh, O

ODh, OAh, ' Ack Fail', O

END ; End of program

23 of 26

App Note 139
Appendix B — Practical Hardware Setup for a Bootstrap Loading Board to
Communicate with a DS1803

DS1E0F DIF

B BSi PEG
i 1EL| 3 DS 2 10Y
| T s -7
scr|
] 2O EalL-0 FAHCTST3
e 2+ _E.E.'..Fl ! E[E 12k = 0
N | THE 3 o 1E LBS ADDRESS (1 HY—RAN
-~ 20X pdedrass
Pigital Tatoh
ot
T |'-.I 1ufF L Progran
057 BOS51 I o . 3
1uF, Compatable DAaTA BUS (&) feta
. Hicro skt
F2 % MSE ADDRESS (T)
PEEH o
— OF
\ D [P3.7) R
REZ32 B = XTALZ —) WE
c_{_f,‘_d Tran=nitter — ETaLl WE_[P3.6) |?
_— R javar
BC -4 ST ae <+ || woc %, BELO7S—hk i TAACOR oo
We 19 3 b 1 1.0 OSCIN B i A1 Vo= 14 HH
HC k6 1etmc o WOE e —2 OUTD HTAL 7 mER T
o ' J S 0E & Y TIEN
— 5 B2 &1 10
L4 D ;ﬂ § E Bl 4
Tand Y1 @
Ecomlzcillator -

BHD Fate
Figure 6 — Schematic of the Hardware Used to Communicate with the DS1803

The hardware setup shown in Fig. 6 was used to develop the code to communicate with the DS1803.
This system is a bootstrap loader board. The board was built by Dallas Semiconductor because it
promotes quick code development without sacrificing too much of the microcontroller’s resources. All of
ports 1 and 3 are available to the user with the exceptions of P3.6, P3.7, P1.2 and P1.3, which are used for
NV-SRAM and serial port 1 access.

The DS87C520 has a bootstrap loader program loaded into its internal memory. When the
microcontroller is reset, it will do one of two things. If the EA pin is connected to Vcc, the boot loader
program in the internal EEPROM memory of the controller will transfer the data passed to it via serial
port 1 to the NV RAM. The NV RAM will then save the data for execution at a later time. If the EA pin
is grounded at the time of reset, the microcontroller will execute the code stored in the NV-RAM.
Because the NV-RAM is being used as both the program memory and data memory, its OE pin has to be
asserted when either the RD pin or the PSEN pin is active. This is accomplished by the AND gate
(74AC08) because both signals are active low.

The DS232A chip is an RS232 transmitter/receiver chip. It accepts 5V power and ground, and generates
its own £12V supply. Once it has the £12V supplies, it can accept and send £12V signals to and from the
RS232 terminal, and it translates them into standard 0-5V CMOS signals for the microprocessor. This
allows a single 5V-power supply for the entire microprocessor board. The capacitors shown connected to

this chip are required for the part to generate its own £12V supply.

24 of 26

App Note 139
The DS1075-66 is an all-silicon oscillator chip. This chip has an internal oscillator that operates at
66.667 Mhz. It also contains a pre-scalar and a divider chain that can be used to slow the oscillator down
by up to a factor of 2052. The oscillator chip provides a 22.22 MHz clock signal. This frequency was
chosen because the original design incorporated a 22.118 MHz crystal to allow serial communication at
19200 baud for the bootstrap loader. An alternative to using this chip would be to use a 22.118 MHz
crystal and two capacitors as shown in the Dallas Semiconductor High Speed Microprocessor User’s
Guide (available online at wwv. dal sem . com).

The SCL and SDA lines of the DS1803 are connected to P1.0 and P1.1 respectively. Both potentiometers
are connected in a voltage divider configuration; therefore, their output is a 0-5V signal. When the board
is first powered up, the output will be OV because the DS1803 contains volatile memory.

25 of 26

App Note 139

Appendix C — Output of DS1803 Program if the DS1803 Was Powered Down
Before Operation

Jason's Proto-board, Rev. 0.1
Now uses DS1075 for a clock, DS1803
added for 2-Wre Communi cati on Deno.

This programtalks via a 2-wire interface

to a DS1803, and uses serial port 1 to
communi cate with the user

00
00

01
00

01
02

13
13

24
25

26 of 26

